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ABSTRACT: Dynamical properties of proteins play an essential role
in their function exertion. The elastic network model (ENM) is an
effective and efficient tool in characterizing the intrinsic dynamical
properties encoded in biomacromolecule structures. The Gaussian
network model (GNM) and anisotropic network model (ANM) are
the two often-used ENM models. Here, we introduce an equally
weighted multiscale ENM (equally weighted mENM) based on the
original mENM (denoted as mENM), in which fitting weights of
Kirchhoff/Hessian matrixes in mENM are removed since they neglect
the details of pairwise interactions. Then, we perform its comparison
with the mENM, traditional ENM, and parameter-free ENM
(pfENM) in reproducing dynamical properties for the six
representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the
results, for B-factor prediction, mENM performs best, while the equally weighted mENM performs also well, better than the
traditional ENM and pfENM models. As to the dynamical cross-correlation map calculation, mENM performs worst, while the
results produced from the equally weighted mENM and pfENM models are close to those from MD trajectories with the latter a
little better than the former. Furthermore, encouragingly, the equally weighted mANM displays the best performance in capturing
the functional motional modes, followed by pfANM and traditional ANM models, while the mANM fails in all the cases. This work
is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize
the model to explore protein dynamics.

■ INTRODUCTION
Protein structural dynamics is intimately related to their
functions, which is reflected in many biological processes such
as protein−ligand interactions,1 signal transduction,2 and
assembly of macromolecular machines and allosteric regu-
lation.3−5 Thus, obtaining accurate protein dynamical charac-
teristics is critical for understanding and deducing their
functions.
Protein dynamics and conformational changes can be

calculated from their structure ensembles which can be
obtained from experimental methods including X-ray crystal-
lography,6 NMR spectroscopy,7 and cryo-electron microscopy
(Cryo-EM)8 under different conditions. However, these
experimental methods are both expensive and time consuming.
Theoretically, molecular dynamics (MD) simulation provides a
useful tool at the atomic level to analyze the mechanical,
structural, and thermodynamic properties of biomolecules.9,10

However, its application requires enormous computer
resources and does not always fully sample the entire
conformational space accessible to a protein. Therefore,
some coarse-grained methods have been developed,11−13 and
among them, the elastic network model (ENM) is a harmonic
potential-based and cost-effective computational method.11

The ENM has achieved great success in predicting the large-

amplitude collective motion for proteins14−18 and even for
RNAs.19 The Gaussian network model (GNM)15,16 and
anisotropic network model (ANM)20 are the two often-used
ENM models.
In the traditional ENM, a protein structure is modeled as an

elastic network of Cα atoms in which the residue pairs within a
given cutoff distance are considered to have interactions and
are connected by a set of Hookean springs with a uniform
force constant. Generally, the low-frequency motion modes
obtained by ENM represent the large-scale collective motions
relevant to molecular functions. In the past few years, variant
methods of ENM have been proposed. Considering residue
specificity, Hamacher and McCammon developed the
extended ANM (eANM) which uses the Miyazawa−Jernigan
(MJ) contact potential to weight the spring force constant and
achieves a good performance in reproducing the crystallo-
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graphic temperature factors (B-factor).21 Later, with the long-
range effect of interactions taken into account, Yang et al.
proposed a parameter-free ENM (pfENM), in which the spring
force constant is proportional to different inverse powers of the
inter-residue distance.22 On the basis of pfENM method,
Zhang et al. introduced the relative solvent accessibility and
developed RpfGNM method.23 As we know, in biomolecules,
different kinds of interactions, such as covalent, van der Waals,
hydrophobic, and electrostatic interactions, have their own
characteristic action ranges. Thus, recently, considering the
multiscale features of the interactions, Xia et al. introduced a
multiscale ENM (mENM) which incorporates different scales
of interactions into the spring force constant. The mENM can
successfully capture the multiscale properties of proteins and
significantly improves the accuracy of B-factor calculation.24 A
previous study has shown that the strong power of some
models in predicting B-factors does not mean that they also
have a tough power in reproducing other dynamical proper-
ties.25 A systematic comparison needs to be done for variant
ENM models in multiple dynamical property calculations.
Generally, B-factors, dynamical cross-correlation maps

(DCCMs), and motional modes are the widely used
parameters to describe protein dynamics. The B-factors of
atoms contain important information about their thermal
motions in a macromolecule, reflecting the local structural
flexibility. The DCCM shows the strength of the collective
motions between residues, which has been verified to be useful
in understanding protein large domain movements.26,27 As for
motional modes, generally low frequency modes represent the
global collective motions related to protein functions, which
provide a substantial understanding of the protein-folding
process28 and allosteric transition.29

In this paper, we introduce an equally weighted mENM
model based on the original one and perform its comparison
with the widely used traditional ENM and pfENM models in
capturing protein dynamical properties including B-factors,
DCCMs, and functional motional modes. For the latter two
properties, the results from ENM models are compared with
those from MD ensembles.

■ MATERIALS AND METHODS
Test Cases. In order to evaluate the performance of ENM

models, we selected six representative proteins (Figure 1) as
test cases whose MD trajectories are available in the Molecular
Dynamics Extended Library (MoDEL).30 The six proteins
have different compositions of secondary structures and varied
residue numbers ranging from 61 to 150 (Table S1). These
proteins are Fasciculin-1 (PDB ID: 1FAS),31 mainly containing
beta-sheet secondary structures, focal adhesion kinase 1
(1K40),32 and extracellular globin (1ASH)33 primarily
composed of α helix secondary structures and the remaining
Glutaredoxin-1 (1KTE),34 Chemotaxis protein CheY
(1CHN),35 and Allergen Bos d 2 (1BJ7)36 made up of α
helix, beta-sheet, and loop secondary structures.

Traditional ENM. In traditional ENM, a protein structure
is represented as an elastic network of some atoms (here Cα)
where the node pairs within a cutoff distance (rc) are
connected by springs with a uniform force constant.37

In traditional GNM, the total internal potential energy of the
network of N nodes can be written as

γ Γ= [Δ ⊗ Δ ]R E RV
1
2

( )GNM
T

(1)

where γ is the spring force constant, the column vector ΔR
represents the fluctuation of the N nodes, ΔRT is the transpose
matrix of ΔR, E is the unitary matrix, Γ is the matrix direct
product, and Γ is the N × N symmetric Kirchhoff matrix, the
elements of which are described as

∑
Γ

Γ

=

− ≠ ≤

≠ >

− =
≠

i j R r

i j R r

i j

1, if and

0, if and

, if
ij

ij c

ij c

j j i

N

ij
,

l

m

oooooooooo

n

oooooooooo (2)

where rc is the cutoff distance, and Rij is the distance between
the ith and jth nodes. The B-factors, dynamical cross-
correlation map (DCCM), and motional modes can be
calculated from the pseudoinverse of the Kirchhoff matrix, as
shown in the following section of the calculation of B-factors
and dynamical cross-correlations based on ENMs.

Figure 1. Six test proteins including Fasciculin-1 (a), Glutaredoxin-1(b), Chemotaxis protein CheY (c), focal adhesion kinase 1 (d), extracellular
globin (e), and allergen Bos d 2 (f) with PDB IDs being 1FAS, 1KTE, 1CHN, 1K40, 1ASH, and 1BJ7, respectively.
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The GNM model can provide the amplitudes of residue
fluctuations but no information about their directions, and this
information is considered in ANM. In traditional ANM, the
total potential energy of the network can be written as

∑γ= −V R R
1
2

( )
i j

N

ij ijANM
,

0 2

(3)

where Rij and Rij
0 refer to the instantaneous and equilibrium

distances between node i and j, respectively. The protein
dynamical properties are determined by a Hessian matrix H
whose element is a submatrix with size of 3 × 3. The submatrix
hij is calculated as the matrix of second-order derivatives of the
potential with respect to the Cartesian coordinates of the
nodes.20 When i ≠ j, the corresponding hij is
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When i = j, the submatrix is

∑= −
≠

h hii
i j

ij
(5)

The dynamical properties can be calculated from the
pseudoinverse of the Hessian matrix, as shown in the following
section of calculation of B-factors and dynamical cross-
correlations based on ENMs.
Parameter-Free ENM (pfENM). Different from the

traditional cutoff-based ENM, the parameter-free ENM
(pfENM) adopts a distance-dependent spring constant set.
In pfENM, some atoms (here also Cα) are selected as nodes.
All the node pairs are considered to be interacting with each
other with the strength being inversely proportional to their
square distance. In pfGNM, the elements of the Kirchhoff
matrix ΓpfGNM are calculated as22

∑
Γ

Γ
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l
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ooooooo

n

ooooooo (6)

where Rij is the distance between the ith and jth nodes. In
pfANM, each submatrix of the Hessian matrix is weighted by
the inverse of the square distance between two nodes.22 When
i ≠ j, hij

pfANM is

= −h h Rij ij ij
pfANM 2

(7)

where hij is of the form of eq 4. When i = j, the submatrix is

∑= −
≠

h hii
i j

ij
pfANM pfANM

(8)

Multiscale ENM (mENM). In multiscale GNM
(mGNM),24 the multiscale interactions are considered.
Different exponential decay kernel functions are used to
represent interactions, which can be written as

η κ κΦ = >η−
κ

R e( ; , ) , 0ij

Riji
k
jjjjj

y
{
zzzzz

(9)

where Rij is the distance between the ith and jth nodes, and the
parameters η and κ control the decay extent. Multiscale
interactions can be represented as the sum of different kernel
functions, and the corresponding Kirchhoff matrix of the nth
kernel function can be described as

∑

η κ

Γ
Γ
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When n (here n = 2) kernel functions are considered, the
multiscale Kirchhoff matrix can be given by

∑Γ Γ= a
n

n n
mGNM mGNM

(11)

where Γn
mGNM is the Kirchhoff matrix corresponding to the nth

kernel function, and the parameters an can be obtained by the
least-square method (LSM)
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|
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where Bi
e is the experimental B-factor of the ith node.

In mANM,24 each submatrix of the Hessian matrix is also of
the form of eq 4. When i ≠ j, the submatrix corresponding to
the nth kernel function can be described as

η κ[ ] = Φh hR( ; , )n ij n ij n n ij
mANM

(13)

When i = j, the submatrix is

∑[ ] = − [ ]
≠

h hn ii
i j

n ij
mANM mANM

(14)

When n (here n = 2) kernel functions are considered, the
multiscale Hessian matrix can be given by

∑=H Ha
n
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(15)

The weights an are determined by
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Equally Weighted mENM.We noticed that in mENM the
least-square method (LSM) used to determine the weights of
the Kirchhoff/Hessian matrixes only considers their diagonal
elements which are equal to the negative sums of the off-
diagonal elements. Thus, it is possible to have different values
of off-diagonal elements and yet obtain the same values of
diagonal elements, which implies that the details of the
pairwise interactions (off-diagonal elements) are not taken into
account in determination of the weights, thereby abolishing the
“network” contribution in the ENM model. To avoid it, we try
a simple way to let all the weights be equal to 1, and we call it
the equally weighted mENM.
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In equally weighted mGNM, when n (here n = 2) kernel
functions are considered, the multiscale Kirchhoff matrix can
be given by

∑Γ Γ=
n

n
equally weighted mGNM mGNM

(17)

where Γn
mGNM is the same as eq 10. In equally weighted

mANM, the Hessian matrix can be given by

∑=H H
n

n
equally weighted mANM mANM

(18)

where Hn
mANM can be obtained by eqs 13 and 14.

Here, although the weights are equal to 1, for a residue pair,
its long-range and short-range interactions represented by two
kernel functions are added at some proportion. For the pair of
residues that are far apart (close to each other), a relative small
or nearly zero (large) short-range interaction and a not very
small (still large) long-range interaction are added together.
Calculation of B-Factors and Dynamical Cross-

Correlations Based on ENMs. In GNMs, the mean-square
fluctuation of each residue and dynamical cross-correlation
between two residues are in proportion to the diagonal and off-
diagonal elements of the pseudoinverse of Kirchhoff matrix,
respectively.

γ
Γ⟨Δ ·Δ ⟩ = [ ]−R R

k T3
i i ii

B 1

(19)

γ
Γ⟨Δ ·Δ ⟩ = [ ]−R R

k T3
i j ij

B 1

(20)

where kB is the Boltzmann constant, and T is the
thermodynamic temperature. The dynamical cross-correlations
of all the residue pairs can construct a map denoted as
dynamical cross-correlation map (DCCM). The pseudoinverse
of Kirchhoff matrix can be decomposed as

∑ μ μλΓ = ·−

=

−

k

N

k k k
T1

2

1

(21)

where λk and μk are the kth eigenvalue and eigenvector of
Kirchhoff matrix, respectively.
In ANMs, the two corresponding dynamical properties can

be written as

γ
⟨Δ ·Δ ⟩ = + +− −

−
− −

− −R R H H H
k T

( )i i i i i i i i
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3 2,3 2
1

3 1,3 1
1
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1
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(23)

The pseudoinverse of the Hessian matrix can be
decomposed as

∑ μ μλ= ·−

=

−H
k

N

k k k
T1

7

3
1

(24)

where λk and μk are the kth eigenvalue and eigenvector of
Hessian matrix, respectively. According to Debye−Waller
theory, the theoretical B-factor of the ith node can be
calculated with the expression

π= ⟨Δ ·Δ ⟩R RB
8

3i
t

i i

2

(25)

The dynamical cross-correlation is usually normalized as

=
⟨Δ ·Δ ⟩

[⟨ Δ ⟩ × ⟨ Δ ⟩]

R R

R R
C

( ) ( )ij
i j

i j
2 2 1/2

(26)

The cross-correlation value varies from −1 to 1. The positive
values indicate that the residues move in the same direction,
and the negative ones indicate that they move in the opposite
direction. The higher the absolute value is, the more the two
residues are correlated. The zero value means that the motions
of residues are completely uncorrelated.

Calculation of DCCMs and Motional Principle
Components Based on MD Ensembles. For the six
representative test proteins whose MD trajectories are available
in MoDEL, Table S1 gives the information on MD
simulations. MoDEL is a database of protein trajectories
obtained by atomistic MD simulations at near-physiological
conditions. In order to get the DCCMs and motional principle
components from MD trajectories, we collect the Cα atoms’
conformations every 1 ps from the trajectories after a 5 ns run
when all the systems reach an equilibrium.
The cross-correlation between two residues can be

calculated with the formula

=
⟨Δ ·Δ ⟩

[⟨Δ ⟩ × ⟨Δ ⟩]

R R

R R
C

t t

t t

( ) ( )

( ) ( )ij
i j

i j
2 2 1/2

(27)

where ΔRi(t) = Ri(t) − ⟨Ri(t)⟩, Ri(t) is the position vector of
Cα atom of the ith residue at time t, and ⟨ ⟩ refers to a time
average of the quantity within the brackets.
The motional principle components (PCs) are obtained by

performing the principal component analysis (PCA) method
on the collected Cα atoms’ conformations. The principal
components are sorted in a decreasing order of eigenvalues and
referred to as PC1, PC2, PC3, and so on. The first few PCs
capture a significant part of the ensemble variance, with PC1
giving the largest contribution, followed by PC2 and PC3 and
so forth.

Comparison of Theoretical and Experimental B-
Factors. The Pearson’s correlation coefficient (PCC)22 is
used to evaluate the correlation extent between theoretical and
experimental B-factors, which is given by

_ =
∑ − −

∑ − ∑ −

=

= =

B PCC
B B B B

B B B B

( )( )

( ) ( )

i
N

i
t t

i
e e

i
N

i
t t

i
N

i
e e

1

1
2

1
2 1/2Ä

Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ (28)

where Bi
t and Bi

e are the theoretical and experimental B-factors

for the ith node, respectively, and Bi
t and Bi

e are their mean
values. A perfect correlation between them gives a value of 1,
whereas perfect anticorrelation gives −1.
It should be pointed out that for traditional ENM and

mENM models (except for pfENM due to no parameters in
it), the optimized parameters are obtained to construct the
corresponding ENM models through maximizing the PCC
(B_PCC) value between the theoretical and experimental B-
factors for each protein. During the process, for traditional
GNM/ANM, the cutoff distance value systematically varies in
the range of [1 Å, 16 Å]/[1 Å, 30 Å] with a step size of 1 Å,
and for mENM, the parameter η/κ systematically varies in the
range of [1 Å, 50 Å]/[1, 10] with step size 1 Å/1. Here, it is
noted that in the optimization process, for a given set of η and
κ parameters, there are still parameters an in eqs 11 and 15 to
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be determined, for which the least-square method is used as
shown in eqs 12 and 16. For clarity, the flowchart of the
optimization is shown in Figure S1.
Comparison of DCCMs from ENMs and MD Ensem-

bles. To detect the effectiveness of different ENM models in
obtaining DCCMs, we compare the similarity between the
DCCMs from ENMs and MD ensembles based on their
Pearson’s correlation coefficient,38 which can be given by

_ =
∑ − ̅ − ̅

[∑ − ̅ ∑ − ̅ ]
=

×

=
×

=
×

DCCM PCC
X X Y Y

X X Y Y

( )( )

( ) ( )

i
N N

i i

i
N N

i i
N N

i

1

1
2

1
2 1/2

(29)

where X and Y represent the DCCM’s elements obtained from
ENMs and MD ensembles, respectively, and X and Y denote
the average values of X and Y, respectively.
Comparison of Motional Modes from ANMs and PCs

from MD Ensembles. In order to explore the effectiveness of
different ENMs in obtaining motional modes, we compare the
motional modes from ANMs and PCs from MD ensembles.
The 10 different performance metrics are used, which include

the maximum and cumulative overlaps between the first 20
modes from ANMs and each of PC1, PC2, and PC3,
respectively, (denoted as O1

max, O2
max, O3

max and CO1
20, CO2

20,
CO3

20), and the root mean square inner products (RMSIPs)
between the first 20 ANM modes and sets of the first 3, 6, 10,
and 20 PCs (denoted as RMSIP3

20, RMSIP6
20, RMSIP10

20, and
RMSIP20

20). The overlap between PC eigenvector pi from MD
ensembles and a given motional mode uj from ANMs is
calculated as

=
| · |

∥ ∥
p u

p u
Oij

i j

i j (30)

where ||pi|| and ||uj || refer to the lengths of pi and uj vectors,
respectively. The maximum overlap between any of the first 20
modes and the PC eigenvector pi is calculated as

= =O Omaxi j ij
max

1 to 20 (31)

The cumulative overlap between the first 20 modes and PC
eigenvector pi is calculated as

Table 1. B_PCC Values between Experimental and Theoretical B-Factors Calculated by Four Kinds of ENM Models on Six
Proteinsa

Model

traditional ENM pfENM mENM equally weighted mENM

PDB ID traditional GNM traditional ANM pfGNM pfANM mGNM mANM equally weighted mGNM equally weighted mANM

1FAS 0.74 0.69 0.63 0.39 0.74 0.88 0.73 0.78
1KTE 0.65 0.64 0.66 0.63 0.67 0.72 0.70 0.64
1CHN 0.66 0.69 0.72 0.71 0.75 0.81 0.74 0.73
1K40 0.79 0.70 0.72 0.58 0.82 0.80 0.81 0.78
1ASH 0.72 0.56 0.65 0.56 0.76 0.79 0.75 0.63
1BJ7 0.69 0.73 0.63 0.66 0.79 0.78 0.73 0.73

aTwo highest B_PCC values from GNMs and ANMs, respectively, for each protein are shown in bold.

Figure 2. Changes of pearson correlation coefficients between DCCMs (DCCM_PCC) obtained from MD ensembles and four kinds of GNMs
with the number of motional modes considered in GNMs for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f).
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The RMSIP between the first l PC eigenvectors and the set
of first 20 modes is calculated as
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(33)

■ RESULTS
Theoretical B-Factor Calculation. B-factors reflect the

local flexibility of molecules. We used the PCC (B_PCC)
values between the theoretical and experimental B-factors to
evaluate the performances of ENM models, with the results
shown in Table 1. From Table 1, for GNMs, it is clear that
mGNM performs best with only one case (1KTE) having a
little worse B_PCC value than that from the equally weighted
mGNM. The previous work has reported that mGNM is
significantly better than traditional GNM in B-factor
prediction.24 For ANMs, the best method is still the mANM
model which attains the highest values in all the cases. Thus,
we can see that with the multiscale interactions considered,
mENM achieves the best performance among the four ENM
models in B-factor calculation. Additionally, it is noted that
with the weights of multiscale Kirchhoff/Hessian matrixes
being equal, interestingly, the equally weighted mGNM/
mANM only has a little worse performance than mGNM/
mANM with an average B_PCC value drop of 0.01/0.08 but
still has a much better performance than the corresponding
traditional ENM and pfENM models.
As for pfENM, besides the inverse second power model, we

also performed the inverse 12th power model (Table S2).
Generally, the latter performs worse than the former,

consistent with the previous result that the inverse second
power model is relatively good in B-factor prediction.22 Thus,
the inverse second power is adopted in pfENM model for the
following calculations.

Comparing DCCMs from ENMs and MD Ensembles.
The DCCM can give the collective motion information and
help understand the functional movements between protein
domains. In order to get the similarity between the DCCMs
obtained by ENMs and MD ensembles, we calculated them
and then evaluated the similarity using their DCCM_PCC
value (see Materials and Methods). Figures 2 and 3 show the
changes of DCCM_PCC values with the number of modes
considered in GNMs and ANMs, respectively. From Figure 2,
for traditional GNM, it can be seen that the curves tend to be
steady after a rapid rise for all the proteins, which is consistent
with the previous observation by Tekpinar and Yildirim on six
proteins.38 That means for traditional GNM the motional
modes beyond a certain number of low frequency modes have
almost no contributions to the cross-correlation calculation. In
contrast, an approximately inverse parabolic shape is observed
for pfGNM on all the proteins, which means that the motional
modes beyond a certain number of low frequency modes can
cause different levels of decrease in cross-correlation
calculations. Interestingly, when setting a cutoff distance 7.0
Å to truncate interactions in pfGNM, the corresponding curves
become steady after a rapid rise for all the proteins (Figure
S2), which implies that the long-range interactions need to be
considered specially and carefully in ENM models.39 As for
mGNM, its performance is unstable, like traditional GNMs on
three proteins (1FAS, 1K40, and 1ASH), like pfGNM’s on one
protein (1CHN), and with failed results obtained on two
proteins (1KTE and 1BJ7). Excitedly, the equally weighted
mGNM displays a significant improvement on the three
proteins 1KTE, 1BJ7, and 1CHN, especially on the former two
where mGNM fails.

Figure 3. Changes of pearson correlation coefficients between DCCMs (DCCM_PCC) obtained from MD ensembles and four kinds of ANMs
with the number of motional modes considered in ANMs for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f).
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From Figure 3, the traditional ANM, compared with
traditional GNM, gives the curves of different trends on two
proteins 1CHN and 1BJ7, dropping first and then keeping
steady after a rapid rise. The curve outlines from pfANM are
similar to those from pfGNM, and on proteins 1FAS, 1KTE,
1K40 and 1ASH, pfANM performs better than pfGNM. As for
mANM, the worst results are observed for all the proteins with
the highest values less than 0.4. Interestingly, the equally
weighted mANM achieves remarkable improvements for all
the proteins. There are four proteins, 1KTE, 1CHN, 1K40, and
1ASH, where the equally weighted mANM performs best
among all the GNM and ANM models.
Table 2 reports the best pearson correlation coefficient

(DCCM_PCC) values between the DCCMs obtained from
ENMs and MD ensembles, respectively, for all the six proteins.
The corresponding maps are shown in Figures 4 and 5 for
mGNM and equally weighted mGNM and Figure 6 and7 for
mANM and equally weighted mANM respectively (see Figures

S3−S4 for traditional GNM and pfGNM and Figures S5−S6
for traditional ANM and pfANM). From Table 2, when the
correlation reaches the best value, for GNMs, the DCCMs
from pfGNM are generally closest to those from MD
ensembles. There are three cases which have the highest
correlation values (0.66 for 1FAS, 0.65 for 1ASH, and 0.78 for
1BJ7), and the lowest value is 0.61 for 1KTE (whose highest
value is 0.63 from the equally weighted mGNM). The pfGNM
is closely followed by the equally weighted mGNM with two
cases having the highest values (0.63 for 1KTE and 0.75 for
1CHN). As shown in Figure S4 and Figure 5, the similarities
between the DCCMs from MD ensembles and pfGNM or
equally weighted mGNM are more or less evident. As for
mGNM, although there is one case having the highest value
0.78 for 1K40, four lowest values (0.20 for 1KTE, 0.67 for
1CHN, 0.55 for 1ASH, and 0.23 for 1BJ7) are observed in
Figure 4, indicating its unsteady performance in DCCM
calculation. For ANMs, they generally perform better than the

Table 2. Best DCCM_PCC Values between DCCMs from MD Ensembles and Four Kinds of ENMs for Six Proteinsa

Model

traditional ENM pfENM mENM equally weighted mENM

PDB ID traditional GNM traditional ANM pfGNM pfANM mGNM mANM equally weighted mGNM equally weighted mANM

1FAS 0.57 0.43 0.66 0.70 0.58 0.35 0.58 0.45
1KTE 0.48 0.80 0.61 0.77 0.20 0.17 0.63 0.81
1CHN 0.71 0.59 0.72 0.68 0.67 0.36 0.75 0.77
1K40 0.67 0.82 0.76 0.80 0.78 0.29 0.68 0.84
1ASH 0.58 0.69 0.65 0.71 0.55 0.32 0.56 0.66
1BJ7 0.56 0.66 0.78 0.78 0.23 0.34 0.62 0.69

aTwo highest values obtained from GNMs and ANMs, respectively, for each protein are shown in bold.

Figure 4. DCCMs obtained from MD ensembles (lower right triangle) and mGNM (upper left triangle) at the best DCCM_PCC value
(corresponding number of motional modes given in parentheses) for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f).
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Figure 5. DCCMs obtained from MD ensembles (lower right triangle) and equally weighted mGNM (upper left triangle) at the best DCCM_PCC
value (corresponding number of motional modes given in parentheses) for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and
1BJ7 (f).

Figure 6. DCCMs obtained from MD ensembles (lower right triangle) and mANM (upper left triangle) at the best DCCM_PCC value
(corresponding number of motional modes given in parentheses) for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f).
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corresponding GNMs except for mENM. Like pfGNM and
equally weighted mGNM, pfANM and equally weighted
mANM perform generally closest to MD simulations, as seen
in Figure S6 and Figure 7. Still, like mGNM, mANM performs
worst among the four ANMs, which can be seen in Figure 6.
In the actual study, we do not know in priori how many low

frequency modes from ENMs should be selected to analyze the
dynamical cross-correlations. Generally, the first few low
frequency modes that contribute just more than 50% to
residue fluctuations are selected to calculate DCCMs.40,41

Table 3 shows DCCM_PCC values between the DCCMs
obtained from MD ensembles and GNMs or ANMs using a
certain number of low frequency modes that contribute just
more than 50% to residue fluctuations. For GNMs, still
pfGNM performs generally closest to MD simulations. There

exist four cases having the highest values (0.65 for 1FAS, 0.61
for 1KTE, 0.61 for 1ASH, and 0.65 for 1BJ7). Traditional
GNM and equally weighted mGNM follow closely behind
pfGNM. Still, mGNM performs unstably with one case having
the highest value (0.70 for 1K40), whereas four lowest values
(0.56 for 1FAS, −0.01 for 1KTE, 0.49 for 1ASH, and 0.05 for
1BJ7) are observed. However, in B-factor computation,
mGNM has a remarkable performance on these cases (0.74
for 1FAS, 0.67 for 1KTE, 0.76 for 1ASH, and 0.79 for 1BJ7).
The big difference suggests that a good performance of an
ENM model in a B-factor calculation does not mean it has a
good performance in other dynamical property computations.
For ANMs, again pfANM performs generally closest to MD
simulations. There are four cases having the highest values
(0.67 for 1FAS, 0.74 for 1K40, 0.70 for 1ASH, and 0.74 for

Figure 7. DCCMs obtained from MD ensembles (lower right triangle) and equally weighted mANM (upper left triangle) at the best DCCM_PCC
value (corresponding number of motional modes given in parentheses) for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and
1BJ7 (f).

Table 3. DCCM_PCC Values between DCCMs Obtained from MD Ensembles and Four Kinds of ENMs Using a Certain
Number of Low Frequency Modes That Contribute Just More Than 50% to Residue Fluctuationsa

Protein ID

Model 1FAS 1KTE 1CHN 1K40 1ASH 1BJ7

traditional ENM b traditional GNM 0.56 (65%) 0.48 (77%) 0.61 (50%) 0.57 (51%) 0.55 (59%) 0.51 (66%)
traditional ANM 0.38 (98%) 0.79 (51%) 0.53 (56%) 0.68 (58%) 0.66 (52%) 0.61 (50%)

pfENM pfGNM 0.65 (51%) 0.61 (81%) 0.72 (50%) 0.46 (75%) 0.61 (64%) 0.65 (54%)
pfANM 0.67 (51%) 0.76 (51%) 0.65(50%) 0.74 (63%) 0.70 (51%) 0.74 (56%)

mENM mGNM 0.56 (85%) −0.01 (100%) 0.63(52%) 0.70 (53%) 0.49 (52%) 0.05 (51%)
mANM 0.35 (97%) 0.17 (100%) 0.27(78%) 0.27 (92%) 0.30 (96%) 0.32 (84%)

equally weighted mENM equally weighted mGNM 0.56 (85%) 0.31 (69%) 0.75 (56%) 0.51 (59%) 0.49 (50%) 0.49 (75%)
equally weighted mANM 0.38 (80%) 0.80 (51%) 0.76 (52%) 0.72 (66%) 0.53 (61%) 0.66 (50%)

aTwo highest values obtained by GNMs and ANMs, respectively, for each protein are shown in bold. The number of modes considered are shown
in parentheses.
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Figure 8. Distributions of dynamical cross-correlations obtained from MD ensembles (black) and mGNM (pink) (at the best DCCM_PCC value)
with respect to the inter-residue distance for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f).

Figure 9. Distributions of dynamical cross-correlations obtained from MD ensembles (black) and equally weighted mGNM (red) (at the best
DCCM_PCC value) with respect to the inter-residue distance for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f)
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Figure 10. Distributions of dynamical cross-correlations obtained from MD ensembles (black) and mANM (pink) (at the best DCCM_PCC value)
with respect to the inter-residue distancefor proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f)

Figure 11. Distributions of dynamical cross-correlations obtained from MD ensembles (black) and equally weighted mANM (red) (at the best
DCCM_PCC value) with respect to the inter-residue distance for proteins 1FAS (a), 1KTE (b), 1CHN (c), 1K40 (d), 1ASH (e), and 1BJ7 (f)
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1BJ7). The equally weighted mANM follows closely behind
pfANM with two cases having the highest values (0.80 for
1KTE and 0.76 for 1CHN). Still, mANM has generally the
worst performance among all ENM models with all the values
less than 0.4.
In conclusion, for GNMs, traditional GNM, pfGNM, and

equally weighted mGNM have similar performances in
dynamical cross-correlation calculations with the latter two
being better. Generally, ANMs perform better than the
corresponding GNMs except for the mENM. Thus, pfANM
and equally weighted mANM, especially the former, have
excellent performances in dynamical cross-correlation calcu-
lations.
Comparing Distributions of Cross-Correlations from

ENMs and MD Ensembles. Since long-range couplings play
an important role in protein folding42 and allosteric
transitions,43,44 we want to explore the distributions of cross-
correlations from ENMs. Figures 8−11 and Figures S7−S10
give the distributions (at best DCCM_PCC value) calculated
with mENM and equally weighted mENM and traditional
ENM and pfENM, respectively, with the results from MD
ensembles shown for comparison. For GNMs, the traditional
GNM, pfGNM, and equally weighted mGNM produce similar
distribution patterns almost for each of the proteins as shown
in Figures S7 and S8 and Figure 9, respectively. The pattern
shows that the largest positive and negative correlations occur
between the residues with the smallest distances apart and half
of the maximum distances apart, respectively, which is
consistent with the result obtained by Tekpinar and Yildirim
on six protein complexes.38 Additionally, at the maximal
distance, the correlations show a slightly negative value.
However, strangely the distributions from mGNM tend to be a
fixed value for 1KTE and 1BJ7, as shown in Figure 8. For
them, when the weights are equal and other parameters are
kept unchanged, their distributions turn to be normal basically.
This means that the optimization of the weights with only the
diagonal elements of the Kirchhoff matrix considered is of
limitation for calculating DCCMs, although a good perform-
ance is obtained in B-factor calculations.
For ANMs, similarly, the traditional ANM, pfANM, and

equally weighted mANM produce similar distributions almost
for each of the proteins, as shown in Figures S9 and S10 and
Figure 11, respectively. Compared with the pattern from
GNMs, the main difference from ANMs is that quite a number
of positive correlations are captured by ANMs for the residue
pairs nearly the largest distances apart, whose correlations are a
little negative in the pattern from GNMs, which is probably
due to the anisotropy consideration in ANMs. For mANM, the
distribution displays an approximately linearly declining
pattern almost for each of the proteins, as shown in Figure 10.
In conclusion, the traditional ANM, pfANM, and equally

weighted mANM can produce similar distributions of cross-
correlations to that from MD simulations, and they can capture
good long-range positive correlations for the residue pairs
nearly the largest distances apart, which the GNM models
cannot achieve.
Comparing ANM Modes with Motions Present in MD

Ensembles. It is worth studying how the correlations are
between motional modes from ANMs and the principle
components (PCs) of motions sampled by MD simulations.
For each protein, we calculated the maximum and cumulative
overlaps between the first 20 modes from ANMs and each of
PC1, PC2, and PC3, respectively (denoted as O1

max, O2
max, O3

max

and CO1
20, CO2

20, CO3
20), and the root mean square inner

products (RMSIPs) between the first 20 ANM modes and sets
of the first 3, 6, 10, and 20 PCs (denoted as RMSIP3

20,
RMSIP6

20, RMSIP10
20, and RMSIP20

20) (see Materials and
Methods).
Table 4 shows the average values of each of the 10

performance metrics for six proteins, with the detailed data for

each protein shown in Table S3. From Table 4, evidently, the
performance of the equally weighted mANM is excellent with
seven (O2

max, CO2
20, CO3

20, RMSIP3
20, RMSIP6

20, RMSIP10
20, and

RMSIP20
20) out of 10 metrics having the highest values, and the

other three (O1
max, O3

max, and CO1
20) all ranked second.

Furthermore, their individual standard deviations are almost
the lowest among the four models. The following one is
pfANM which achieves the highest values in three metrics
(O1

max, O2
max, and CO1

20) and slightly lower values in the other
seven metrics (O3

max, CO2
20, CO3

20, RMSIP3
20, RMSIP6

20, RMSIP10
20,

and RMSIP20
20) than the corresponding highest values. For

traditional ANM, only one (O3
max) has the highest value, and

for mANM, each of the 10 has the lowest value. Thus, taking
MD simulations as the standard, the performance power of
ANMs in producing the low frequency functional motional
modes is the equally weighted as mANM > pfANM >
traditional ANM > mANM.
Overall, the equally weighted mANM and pfANM, especially

the former, perform excellently in reproducing protein motions
in MD ensembles. This suggests that the consideration of long-
range interactions is critical for ANM models to capture
protein functional motions.
As a summary, we compiled a map (Figure 12) about the

performances of the ENM models in the calculations of B-
factors, DCCMs, and motional modes, which shows that the
equally weighted mENM achieves the ideal performance
balance in these dynamical property calculations.
Additionally, it is noted that with only the weights of

Kirchhoff/Hessian matrixes being equal, the equally weighted
mENM displays a remarkable improvement compared with the
original mENM in calculating cross-correlations and motional
modes and meanwhile has a good performance in B-factor
reproduction. The reason could be that the diagonal element
(negative sum of the off-diagonal elements representing the

Table 4. Average Values of overlaps and RMSIPs between
Motional Modes from ANMs and Principle Components of
Motions Sampled by MD Simulations for Six Proteinsa

Model

Metrics
traditional
ANM pfANM mANM

equally
weighted
mANM

O1
max 0.31 (0.14) 0.34 (0.14) 0.24 (0.15) 0.32 (0.10)

O2
max 0.27 (0.08) 0.29 (0.11) 0.18 (0.12) 0.29 (0.05)

O3
max 0.35 (0.09) 0.30 (0.06) 0.19 (0.13) 0.31 (0.07)

CO1
20 0.58 (0.20) 0.60 (0.16) 0.38 (0.22) 0.59 (0.13)

CO2
20 0.54 (0.12) 0.51 (0.14) 0.34 (0.21) 0.56 (0.08)

CO3
20 0.59 (0.07) 0.57 (0.09) 0.36 (0.25) 0.63 (0.07)

RMSIP3
20 0.57 (0.10) 0.57 (0.10) 0.36 (0.22) 0.60 (0.04)

RMSIP6
20 0.31 (0.03) 0.31 (0.03) 0.23 (0.09) 0.32 (0.01)

RMSIP10
20 0.54 (0.07) 0.54 (0.08) 0.36 (0.21) 0.57 (0.04)

RMSIP20
20 0.50 (0.07) 0.50 (0.05) 0.36 (0.20) 0.53 (0.03)

aThe highest value for each of the 10 metrics is shown in bold.
Standard deviations are given in parentheses.
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pairwise interactions) in the Kirchhoff/Hessian matrix reflects
the constrains (i.e., rigidity) from other residues in the system
on the one the diagonal element represents, and thus, it is not
difficult to understand that the optimization of the weights
only with the diagonal elements considered can produce a
better B-factor calculation. However, it is possible to have
different off-diagonal elements and yet obtain the same
diagonal elements, which means that the details of pairwise
interactions are neglected in optimizing the weights. The
optimization way in mENM abolishes the “network”
contribution in the ENM model and maybe is the main
reason why mENM produces a not ideal performance in
calculating cross-correlations and motional modes although a
better B-factor computation. Probably, it is better to get an
optimal set of parameters through minimizing the differences
between the diagonal elements of the pseudoinverse Kirchh-
off/Hessian matrix and the corresponding experimental B-
factors, which is now underway.
Comparison of Equally Weighted mGNM and mGNM

in B-Factor Calculation on a Large Data Set. From above,
we can see that with an equal weight for different scales there is
a better balance of performance in B-factor calculations and
dynamic cross-correlation calculations on the six systems. In
order to detect the performance of equally weighted mGNM in
B-factor calculations on a large data set, we give B_PCC values
of the model on the relatively small- (33 systems), medium-,36

and large-sized35 sets of structures used by the Wu group45 and
Wei group in their comparative study46 in Figure 13 (see Table
S4 for detailed data), with the corresponding results from
mGNM also shown for comparison. For each of the two
models, the optimal η parameters are systematically searched
in the range of [1 Å, 26 Å] with step size of 1 Å, and κ is set to
1.24 From Figure 13, for all the sets, generally, the B_PCC
values from equally weighted mGNM are the same with or
slightly lower than those from mGNM except for one small-
sized structure 1USE and two medium-sized ones 2PKT and
1R7J. Poor performances are observed for equally weighted

mGNM for the three cases (with values being −0.09, −0.18,
and 0.30), and interestingly, the traditional GNM also gives
similar results (−0.14, −0.19, and 0.37) reported by Wei
group.46 The reason for this may be their loosely packed
structures. These results suggest again that the performance of
equally weighted mGNM is close to that of mGNM in B-factor
calculations, consistent with the previous data on the six
proteins.

■ DISCUSSION
Usually, the ENM model is constructed with the Cα atom
representing each residue in the protein. The ENM methods
with other atoms (not only Cα) representing each residue have
also been explored in the past years. Zhang and Kurgan
introduced a linear regression-based, parameter-free, sequence-
derived GNM (L-pfSeqGNM) whose force constants are from
the predicted residue contact maps (with Cβ atoms
representing residues) to study motions for millions of the
readily available sequences.47 Additionally, Wu et al. compared
the performances of GNMs with backbone atoms Cα, C, N,
and Cβ representing each residue, respectively, and validated
that the model using Cα as the representative atom performs
the best in flexibility predictions for a large set of 104
proteins.45

For the determination of the force parameters in ENM,
fitting theoretical with experimental B-factors is a relatively
easy way as the latter can be obtained directly from X-ray
structures. In fact, the dynamic cross-correlation can also be
used to determine the force constants, which need the MD
simulation or NMR ensemble for the studied structure. The
REACH method identifies the force constants through an
inversion of a covariance matrix (dynamic cross-correlation)
derived from MD simulations.48 Similarly, the heteroENM
utilizes an iterative algorithm to fit the force constants with
MD-derived covariances.49 Yang et al. directly computed the
force constants with the inverse covariance estimation using
the ROPE method50 on a large-scale set NMR ensemble.51

Generally, these methods achieve a trade-off on concurrently
improving the predictions of residue fluctuation and dynamic
cross-correlation compared with the traditional GNM. An
additional advantage of using MD-derived covariances is that
MD simulations permit in silico alterations to the system under

Figure 12. Performance comparison among traditional ANM,
pfANM, mANM, and equally weighted mANM in the calculations
of B-factor, DCCM, and motional mode with the average values of
B_PCC, DCCM_PCC, and all the metrics describing the correlations
between motional modes from ANMs and PCs of motions sampled
by MD simulations over the six proteins. The three axes extend in the
positive direction from the origin. The lines connect the values
obtained from the same model. Traditional ANM, pfANM, mANM,
and equally weighted mANM are colored in blue, orange, pink, and
red, respectively.

Figure 13. Head-to-head comparison between B_PCCs obtained by
equally weighted mGNM and those by mGNM over relatively small-,
medium-, and large-sized sets of structures.
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study, allowing one to find effective force constants that are
specific to any environment that can be simulated.
As for the evaluation of ENMs, in fact, the crystallographic

B-factor may not be a best index as it is often influenced by
crystallization conditions, the refinement method, and
importantly, the molecular environment of the crystal
structure.52 Hence, other experimental data (for example
NMR51) or MD simulations53 should be also considered for
ENMs’ evaluation. Additionally, Kmiecik et al. developed a
Monte Carlo sampling-based coarse-grained approach (CABS-
flex) for predicting structure flexibility from a single protein
model, reproducing the residue fluctuations well correlated to
those of NMR ensembles.52

Usually, the ENM model is constructed based on one
reference structure of the protein under study. However, the
ENM approaches based on more than one reference structure
have been proven to be a good scheme to describe protein
dynamics especially for those with evident conformational
transitions.48,54,55 In 2007, the REACH method proposed by
Moritsugu and Smith where the force constants are calculated
from MD-derived covariances was applied to monomeric and
dimeric myoglobin, reproducing well the residue fluctuations
involved in the former intramolecular motions and the latter
intermolecular motions.48 In 2010, Lezon and Bahar presented
a technique for optimizing the distance- and contact order-
dependent force constants (OFC-GNM) based on the
statistical analyses of the auto- and cross-correlations in
residue fluctuations for the NMR ensembles of 68 proteins,
achieving remarkable improvements compared with traditional
GNM especially in reproducing cross-correlations between
residues located far apart in the structure.54 In 2015, Katebi et
al. constructed the GNM for HIV-1 protease based on 329 X-
ray structures representing different states besides “open” and
“closed” ones by relating spring constants to the inverse of the
variance of internal distance changes of residue pairs, revealing
well HIV-1 protease’s dynamics, mechanisms, and allostery
buried within the structures.55

Additionally, many freely available ENM servers have
provided the data describing structure dynamics. The
MAVEN server (http://maven.sourceforge.net) developed by
Jernigan et al. incorporates many ENM methods including
traditional ANM and GNM and pfANM to facilitate useful
analyses on the same platform.56 The ANM server (http://
anm.csb.pitt.edu/) introduced by Eyal et al. is more accessible
to nonsophisticated users, and its updated version allows
inclusion of nucleic acids and ligands in the ANM model and
offers the flexibility of defining network nodes, interaction
types, and cutoffs.20 The user-friendly interface and database
iGNM (http://gnmdb.csb.pitt.edu/) developed by Bahar et al.
covers more than 95% of the structures available in PDB,
which makes it a useful resource for establishing the bridge
between structure, dynamics, and function. Advanced search
and visualization capabilities permit users to retrieve
information on inter-residue and interdomain cross-correla-
tions, cooperative motion modes, and locations of hinge
sites.15

At last, as for the application of ENMs, as a good
complementarity, Kolinski et al. developed efficient coarse-
grained (Cα, Cβ, side-chain (CABS) CG model) modeling
methods (CABS MC and CABS-flex) based on the Monte
Carlo (MC) technique for protein structure and dynamics
simulations. For the structural fluctuation, ENM and CABS-
flex provide dynamic profiles very close to those from NMR;52

For large-scale structural transitions, ENM methods are well
suited only for certain problems, such as protein dynamics
around the native state or conformational transitions between
“open” and “closed” states, while the CABS MC simulations
can be used for simulations of general structural transitions
such as entire folding/unfolding processes.57,58

■ CONCLUSIONS

In the present study, we systematically compare the perform-
ances of the widely used traditional ENM and pfENM models,
and the recently proposed mENM model with multiscale
interactions considered in the calculations of B-factors,
dynamical cross-correlation maps (DCCMs, and motional
modes on the six representative proteins with MD simulations
taken as standard for the evaluation of the latter two dynamical
property calculations. Here, we introduce an equally weighted
mENM model based on the original one.
In the B-factor calculation, mENM has a remarkable

performance, better than the traditional ENM and pfENM
models. Interestingly, with the weights of Kirchhoff/Hessian
matrixes being equal, the equally weighted mENM still has a
good performance with the equally weighted mGNM better
than the corresponding mANM, following closely after
mENM. In the DCCM calculation, compared with GNMs,
generally the corresponding ANMs (except for mENM)
produce more similar DCCMs to those from MD ensembles
regardless of the certain number of low frequency modes
considered in ANMs that contribute just more than 50% to
residue fluctuations or at the best pearson’s correlation
coefficient between the two DCCMs. This may be due to
the anisotropy consideration in ANM models. pfANM and the
equally weighted mANM models have a very good perform-
ance. However, mGNM gives an unstable performance, and
mANM fails in the six cases. For motional mode extraction,
encouragingly, the equally weighted mANM has a best
performance with the results being closest to those from MD
simulations, which is followed by pfANM, which suggests that
the consideration of long-range interactions plays a critical role
in capturing the collective functional modes encoded in
protein structures. However, still the mANM fails in the six
cases.
Considering that the six proteins are not very big (residue

numbers ranging 61−150) and have no evidently large
conformational changes, the 10 ns simulation time may be
acceptable for extracting dynamic cross-correlations. In the
future, the method will be tested on the bigger proteins with
evident conformational changes, which should require longer
simulation times to sample the conformational space. This
work is helpful for strengthening the understanding of the
physical bases of ENM methods and guiding researchers to
select suitable ENM models to explore the function-related
dynamics of proteins.
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